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ABSTRACT
Collaborative problem solving is defined as having cognitive and
social dimensions. While network analytic techniques such as epis-
temic network analysis (ENA) and social network analysis (SNA)
have been successfully used to investigate the patterns of cognitive
and social connections that describe CPS, few attempts have been
made to combine the two approaches. Building on prior work that
used ENA and SNA metrics as independent predictors of collabora-
tive learning, we propose and test the integrated social-epistemic
network signature (iSENS), an approach that affords the simulta-
neous investigation of cognitive and social connections. We tested
iSENS on data collected from military teams participating in train-
ing scenarios. Our results suggest that (1) these teams are defined
by specific patterns of cognitive and social connections, (2) iSENS
networks are able to capture these patterns, and (3) iSENS is a better
predictor of team outcomes compared to ENA alone, SNA alone,
and a non-integrated SENS approach.

CCS CONCEPTS
• Applied computing→ Collaborative learning.
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1 INTRODUCTION
The complex problems we face today often require the coordi-
nated efforts of multiple individuals. As a result, collaborative
problem solving (CPS) has become a critical 21st century skill to
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study, teach, and assess [10]. CPS is defined as having both a cogni-
tive dimension—for example, representing problems—and a social
dimension—for example, negotiating meaning with others. While
network analytic techniques such as epistemic network analysis
(ENA) [22] and social network analysis (SNA) [9] have been suc-
cessfully used to investigate the patterns of cognitive and social
connections that describe CPS, few attempts have been made to
combine the two approaches.

In this paper, we build on prior work that investigated collab-
orative processes by combining ENA and SNA—social-epistemic
network signature (SENS) [8]. Although this work accounted for
patterns of cognitive and social connections within the same analy-
sis, the patterns were treated as independent predictors and it did
not produce a network representation that captured both kinds of
patterns. Here, we propose and test an integrated SENS approach
(iSENS) that allows researchers to simultaneously investigate cog-
nitive and social connections.

To test iSENS, we investigated the cognitive and social patterns
that defined the CPS processes of military teams in training. We
modeled these patterns using ENA, SNA, and iSENS. After compar-
ing the interpretative value of the resulting networks, we statisti-
cally compared iSENS to ENA, SNA, and SENS in terms of their
ability to predict team outcomes.

2 THEORY
2.1 Collaborative Problem Solving
While many definitions of CPS exist in the literature, it is typically
defined as having both a cognitive and a social dimension: framing,
investigating, and solving problems collaboratively requires infor-
mation sharing, negotiation of meaning, andmore broadly, attempts
to establish and maintain a shared conception of the task [17][20].
For example, in their work developing the PISA 2015 assessment,
the Organization for Economic Cooperation and Development [18]
defined CPS as the combination of four cognitive competencies
(exploring the problem space, representing the problem, planning
and executing solutions, and monitoring and reflecting on progress)
and three social competencies (maintaining a shared understanding
of the problem, taking collaborative actions, and maintaining team
organization).

Several learning analytic techniques have been used to inves-
tigate the cognitive and social dimensions of CPS including auto-
mated discourse analysis [6], patternmining [19], and lag sequential
analysis [14]. In addition to these techniques, network analyses are
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a powerful approach for understanding the cognitive and social
connections that characterize CPS.

2.2 Modeling Cognitive Connections
Although it is still common to model the cognitive aspects of CPS
by coding and quantifying meaningful elements of discourse as if
they occur in isolation [3], work in the learning sciences suggests
that the connections that people make between these elements are
more representative of complex thinking [21]. For example, in the
military context we investigate in this paper, teams are training to
identify hostile aircraft at sea. In this situation, it is less important
to know specific facts about the aircraft, such as speed, location,
and weapons, than to know how these facts relate to potentially
threatening behavior and the defense of their own ship.

During CPS, these connections are particularly important be-
cause when individuals collaborate they respond to and build upon
the prior discourse moves of others to form a common ground [2].
Collaborative interactions and the common ground they produce
suggest that the discourse moves of individuals during CPS are
interdependent, and thus inherently connected.

Epistemic network analysis (ENA) is a technique applied to coded
data that measures the connections collaborating individuals make
between relevant aspects of their discourse. In ENA, network nodes
correspond to codes and weighted connections represent the fre-
quency with which codes co-occurred in the discourse. These net-
works are visualized in a metric space that allows comparisons
between individuals and teams in terms of the cognitive connec-
tions they made.

ENA accounts for the temporal variation in these connections,
while also accounting for the interdependence between individuals.
In particular, it measures the connections that individuals make be-
tween discourse moves within a recent window of moves, whether
those connections are to their own moves or the moves of others.
This makes it possible to extract information about the contribu-
tions of each individual within the context of their team [23]. ENA
has been used to successfully study the cognitive dimension of CPS
in contexts such as engineering education [1], military training
[27], and medical decision-making [25].

ENA is useful for understanding connections between elements
of discourse; however, it does not represent the structure of the
social interactions that produce those connections. In other words,
it canmeasure what individuals in collaborative situations are doing
and how they thinking, but not the social patterns that give rise to
these phenomena.

2.3 Modeling Social Connections
When individuals collaborate, they interact with one another to
form patterns of social interactions. Social network analysis (SNA)
is one technique for modeling these interactions. In contrast to
ENA, which focuses on the connections between meaningful as-
pects of discourse, SNA focuses on the connections between the
individuals that produced the discourse. Specifically, the nodes of so-
cial networks correspond to individuals and weighted connections
represent the frequency with which individuals interacted.

SNA can provide information about how social networks are
interlinked (density), the extent to which the network depends on

certain individuals (centrality), whether individuals have similar
functions in the network (structural equivalence), and other struc-
tural features [9]. SNA is a commonly applied technique within
learning analytics [5], and has been used to investigate phenomena
such as roles [15] and the relationship between social patterns and
academic performance [13].

Although SNA provides insight into the social connections that
characterize CPS, it is limited because it does not account for the
content of those connections. Content is important because it influ-
ences the dynamics of the social network. For example, on teams
with individuals in different roles, such as leaders and followers,
information passed by the followers may prompt leaders to interact
with the team, perhaps giving instructions or guidance. Moreover,
the content of the connections can be quite different depending on
who is interacting: leaders may interact about planning, followers
may interact about implementing instructions. A content neutral
technique such as SNA ignores the influence that content has on
connections and treats all connections equally.

The discussion above suggests that network techniques such as
ENA and SNA are powerful tools for studying the cognitive and
social dimensions of CPS. However, each technique is limited by
its focus on only one dimension. The complimentary nature of the
techniques suggests that combining them is a potentially useful
approach.

2.4 Social-Epistemic Network Signature
While prior work has separately used ENA and SNA to investigate
CPS, there have been few attempts to combine networks analy-
ses such as these to model the cognitive and social dimensions of
CPS within the same analysis. A notable exception is the social-
epistemic network signature (SENS), which combines SNA and
ENA to model both the structure and content of connections in
collaborative settings.

Gašević and colleagues [8] developed and used SENS to investi-
gate the cognitive and social aspects of collaboration in the context
of a MOOC. Specifically, they found that (a) ENAwas able to predict
the structure of social connections at the group and individual level,
(b) SNA was able to predict differences in the content of students’
discourse, and (c) a SENS model predicted student outcomes better
than models using ENA or SNA metrics alone. In other words, this
work found evidence for the relationship between the cognitive and
social dimensions of CPS using ENA and SNA and that a combined
ENA/SNA approach could outperform either approach alone.

While SENS is an important step toward combining network
analyses to study CPS, the previous approach used ENA and SNA-
based metrics as independent predictors of performance. However,
as their study illustrated, and as theory on CPS suggests, the cogni-
tive and social dimensions of are related. Moreover, the previous
approach did not produce a network representation that captured
both cognitive and social connections. Such a representation could
provide researchers a more complete understanding of CPS pro-
cesses.
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2.5 Integrated Social-Epistemic Network
Signature

In this paper, we extend the SENS approach in three ways. First,
the prior study analyzed student data collected from the discussion
forums of a MOOC. In contrast, we apply the technique to data col-
lected from a military context in which professional teams trained
using a high-fidelity simulation of air defense warfare (ADW). Thus,
the present study applies the technique in a potentially more au-
thentic and more collaborative context.

Second, the prior study combined ENA and SNA, but treated
them independently. Here, we propose and test an integrated ver-
sion of SENS—iSENS. This approach uses ENA to position individual
team members in a space defined by the cognitive connections they
made, calculates a metric that represents the position of the teams
in this space, and weights this metric using information about the
social networks of teams. The outcome is a unified metric that
captures the relationship between cognitive and social connections.
In other words, it captures both of who interacted with whom and
what they interacted about.

Third, the prior study did not develop a network representation
of SENS that could be used to simultaneously investigate cognitive
and social connections. The iSENS approach incorporates such a
representation, allowing researchers to view cognitive and social
connections in relation to one another.

Here, we argue that the iSENS approach is significant because
it has the potential to streamline the analysis of CPS while also
providing a more complete representation of CPS processes.

To test iSENS, we address the following research questions using
data from ADW teams:

(1) What patterns of cognitive and social connections are salient
for these teams?

(2) What do ENA, SNA, and iSENS networks reveal about these
teams?

(3) Does iSENS predict team outcomes better than ENA alone,
SNA alone, or SENS?

To address these questions, we conducted a qualitative analysis,
network analyses, and a comparison of predictive models of team
performance that used statistics from ENA, SNA, SENS, and iSENS.
Prior qualitative analyses and ENA have been conducted on this
ADW dataset [27][26], and we draw on the methods and results of
those studies below.

3 METHODS
3.1 Data
16 teams participated in four training scenarios to test the impact
of a decision-support system and teamwork training in an ADW
context [11]. During the scenarios, teams used a watch-station that
provided information about the identification and behavior of ships
and aircraft (referred to as tracks) in the vicinity of their warship.
Teams needed to detect and identify multiple tracks, assess whether
they were threats, and decide how to respond.

Each team consisted of up to six participants assigned to roles.
Command roles included the Commanding Officer (CO) and the
Tactical Action Officer (TAO), who were primarily responsible for
making tactical decisions. Supporting roles included the Electronic

Warfare Supervisor (EWS), the Air Defense Warfare Coordinator
(ADWC), the Tactical Information Coordinator (TIC), and the Iden-
tification Supervisor (IDS), who were primarily responsible for
managing radar contacts and passing information to the comman-
ders. Team members talked over an open radio channel and could
also communicate with training personnel. The teams were divided
into two conditions with eight teams in each. Control teams had
access to standard watch-stations; experimental teams received
teamwork training and had access to watch-stations augmented by
a decision-support system that highlighted track information and
actions taken by the team.

The dataset consists of transcripts and teamwork scores for each
combination of team and scenario (team-scenario) for a total of
63 team-scenarios. The transcripts are segmented by turn of talk
for a total of 12,027 lines. Teamwork was assessed using the Air
Defense Warfare Team Observation Measure (ATOM), an exter-
nally validated measure of team performance that summarizes four
dimensions of CPS—supporting behavior, leadership, information
exchange, and communication—into a score from 1 (worst) to 55
(best) [12].

3.2 Qualitative Analysis
To address our first research question, we conducted a qualitative
analysis using an automated coding scheme developed and vali-
dated during a prior study of the same data [27]. These codes reflect
the processes teams used to make decisions regarding potentially
hostile tracks. For each code, all pairwise combinations of raters
(humans and automated classifier) achieved acceptable values of
Cohen’s kappa (κ > 0.80) and Shaffer’s rho [7] (ρ (0.65) < 0.05). We
applied the automated coding scheme to the transcripts such that
each turn of talk was coded for the presence or absence of the codes
in Table 1.

3.3 Network Analyses
To address our second research question, we conducted ENA and
SNA on the data using the rENA package for R [16]. We conducted
the iSENS analysis by integrating statistics derived from ENA and
SNA as described below.

3.3.1 Epistemic Network Analysis. ENA uses a moving window
to construct an undirected network for each turn of talk in the
data. Connections in the network are defined as the co-occurrence
between codes in the current turn of talk and codes within the
window, defined as a specific number of prior turns. For this analy-
sis, the window included each turn plus the previous four turns (a
window size of 5). This window size was determined through our
qualitative analysis of the data.

To create networks for individuals in the different team-scenarios,
ENA aggregates the networks associated with their turns of talk,
normalizes the collection of these networks to account for variation
in amount of talk, and performs a dimensional reduction on this
data via singular value decomposition.

Networks were visualized using two coordinated representations:
(1) an ENA score for each individual, which represents the location
of their network in the ENA space produced by the dimensional
reduction, and (2) a weighted network graph for each individual in
which the nodes correspond to codes, and the edges are proportional
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Table 1: Codes, definitions, and examples.

Code Definition Example

Detection Talk about radar detection of a track or the
identification of a track, (e.g., vessel type).

IR/EW NEW BEARING, BEARING 078 APQ120 CORRE-
LATES TRACK 7036 POSSIBLE F-4

Track Behavior Talk about kinematic data about a track or
a track’s location

AIR/IDS TRACK NUMBER 7021 DROP IN ALTITUDE
TO 18 THOUSAND FEET

Assessment Talk about whether a track is friendly or
hostile, the threat level of a track, or indi-
cating tracks of interest

TRACKS OF INTEREST 7013 LEVEL 5 7037 LEVEL 5
7007 LEVEL 4 TRACK 7020 LEVEL 5 AND 7036 LEVEL 5

Status Updates Talk about procedural information, e.g.,
track responses, or talk about tactical ac-
tions taken by the team

TAO ID, STILL NO RESPONSE FROM TRACK 37, POS-
SIBLE PUMA HELO

Seeking Information Asking questions regarding track behavior,
identification, or status.

TAO CO, WE’VE UPGRADED THEM TO LEVEL 7
RIGHT?

Recommendation Recommending or requesting tactical ac-
tions

AIR/TIC RECOMMEND LEVEL THREE ON TRACK 7016
7022

Deterrent Orders Giving orders meant to warn or deter
tracks.

TIC AIR, CONDUCT LEVEL 2 WARNING ON 7037

Defensive Orders Giving orders to prepare defenses or en-
gage hostile tracks

TAO/CO COVER 7016 WITH BIRDS

to the relative frequency of connection between codes. In these
graphs, thicker edges indicate relatively more frequent connections.

The positions of the network graph nodes are fixed across all
networks using an optimization routine. These graphs can be used
to interpret the dimensions of the space, and thus the positions of
the ENA scores: the dimensions distinguish individuals in terms of
connections between codes whose network nodes are located at the
extremes of the space. For example, individuals with ENA scores
on the left side of the space will tend to have stronger connections
between codes on the left side. Similarly, those with ENA scores on
the right side will tend to have stronger connections between codes
on the right. To create network graphs for each team-scenario, we
averaged the individual networks by team-scenario and plotted the
results.

3.3.2 Social Network Analysis. The SNA algorithm included in
rENA uses a moving window to construct an undirected network
for each turn of talk in the data. Connections in the network are
defined as the co-occurrence between the speaker of the current
turn and the speakers within the window, again defined as 5 total
turns of talk. In other words, these connections represent the social
network created by each turn of talk.

To create networks for each individual team member, the al-
gorithm aggregates the networks associated with their turns of
talk. Similarly, to create networks for each team-scenario, the algo-
rithm aggregates the networks associated with the individuals in
the team-scenario. The results of this processes can be plotted as a
weighted network graph for each team-scenario in which the nodes
correspond to individual team members, and the edges correspond
to the frequency with which individuals communicated. Thicker
edges indicate more frequent communication.

3.3.3 Integrated Social-Epistemic Network Signature. To conduct
the iSENS analysis, we integrated the outputs of ENA and SNA to
create a representation of each team-scenario’s social network in
ENA space. Specifically, we created weighted network graphs for
each team-scenario whose nodes corresponded to individuals, and
whose edges corresponded to the frequency with which individuals
communicated. However, rather than an arbitrary placement of
the nodes calculated using SNA, the nodes in these diagrams corre-
spond to the locations of the individuals in the ENA space—that is,
their ENA scores. This node placement means that iSENS networks
reflect both the social structure of team connections, via the edges,
and the cognitive structure of team connections, via the locations
of the nodes in the space.

3.4 Predictive Model Comparison
To address our third research question, we first calculated summary
statistics for each team-scenario that could be used to compare
ENA, SNA, SENS, and iSENS.

For the ENA statistic, we calculated the centroid of each team-
scenario’s ENA scores—that is, for each team-scenario, we calcu-
lated the mean location of the ENA scores corresponding to the
individuals in the team-scenario. This statistic summarized the
structure of cognitive connections made by each team-scenario. For
the SNA statistic, we calculated the weighted density [4] of each
team-scenario’s network: the sum of the weighted connections in
the network, divided by the number of possible connections in the
network. This statistic summarized the structure of the social con-
nections made by each team-scenario. And for the iSENS statistic,
we calculated a weighted centroid for each team-scenario’s iSENS
network: the average position of the network nodes weighted by
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Table 2: Team Excerpt.

Line Speaker Utterance

1 EWS TIC,TAO/EW HOLD PRIMUS 40 RADAR BEARING 165 CORRELATES A SUPERPUMA HELO ORIGIN
FARSEE ISLAND

2 TIC TRACK NUMBER
3 EWS TRACK NUMBER CORRELATION 7037
4 TAO CO/TAO WOULD LIKE TO CONDUCT LEVEL ONE QUERY ON 7037 ITS HEADING FOR US
5 TIC IDS/TIC INTERROGATE 7023 BEARING 024
6 IDS INTERROGATE TRACK 7023 ID AYE
7 CO TAO/CO CONDUCT LEVEL ONE TRACK 7037
8 TAO TIC/TAO CONDUCT LEVEL ONE ON TRACK 7037
9 TAO CO/TAO WOULD LIKE TO CONDUCT LEVEL TWOWARNING ON TRACK 7013 LEVEL ONE IS A

NEGATIVE RESPONSE
10 CO AYE TAO/CO CONDUCT LEVEL TWOWARNING AND COVER TRACK 7013

the edge values of the network. Effectively, this statistic weights
the centroid (the ENA statistic) by the density of the social network
(the SNA statistic), summarizing the structure of the cognitive and
social connections of each team-scenario.

We compared ENA, SNA, SENS, and iSENS by incorporating
these statistics into four hierarchical linear models (HLMs). HLM
is a regression technique for data with a nested-structure [24]. In
this case, team-scenarios (level-one) were nested into teams (level-
two). Each model included the team variable as a random effect
and the team-scenario ATOM scores as the outcome variable. The
models differed with respect to their explanatory variables. The
ENA-HLM used the centroid locations on the first two dimensions
of the ENA space, while the SNA-HLM used weighted density.
Following Gašević and colleagues (2018), the SENS-HLM used ENA
and SNA statistics as independent variables. Specifically, it included
the centroid locations from ENA and the weighted density from
SNA. Finally, the iSENS-HLM used the weighted centroid locations
on the first two dimensions of the ENA space.

We compared these modeling approaches in two ways. First, we
compared them in terms of the presence of statistically significant
explanatory variables. Second, we used bootstrapping to compare
the performance of models that had statistically significant explana-
tory variables. This second procedure is similar to commonmethods
for comparing the performance of machine learning models [28].

To conduct the bootstrapping procedure, we generated 100 boot-
strap samples of the transcript data. For each bootstrap sample,
we randomly selected (with replacement) from the list of 63 team-
scenarios 63 times, adding all lines of the transcript for the selected
team-scenarios to the sample. For the approaches with significant
explanatory variables, we created HLMs for each bootstrap sample
and calculated the sum of the squared errors (SSE) between the
predicted ATOM scores of each model and the true scores. This
resulted in a distributions of SSEs for each approach. To test for
differences between the approaches, we constructed 95% confidence
intervals around the differences between their mean SSEs.

4 RESULTS
4.1 RQ1
To illustrate the patterns of cognitive and social connections our
qualitative analysis revealed, we present an excerpt from one high-
performing team-scenario.

The task that these teams performed involved the radar detec-
tion of tracks (identified by a track number), decisions regarding
their threat level, and decisions regarding deterrent or defensive
actions. Actions included "interrogating" or "querying" tracks to
gain information about their intentions, sending warnings to tracks
that strayed too close to the warship, and defensive actions such
as "covering" tracks with guns. During the scenarios, teams had
to manage several tracks simultaneously at different stages of this
process. For example, new tracks could be detected while the team
was waiting on the responses of other tracks to warnings. These
conditions made for a complex and quickly evolving context.

In the excerpt shown in Table 2, this team makes a radar de-
tection of a track while they are in midst of sending queries and
warnings to previously detected tracks. Team members held partic-
ular roles, such as the commanding officer (CO) or tactical action
officer (TAO), and often began their communications by stating
who they were addressing and who was speaking. For example, in
the transcript "CO/TAO" indicates that the TAO was directing their
communication to the CO. However, team members communicated
via an open-channel, meaning that when one team member spoke,
all others received the communication.

The excerpt begins as the EWS detects a new track in line 1
[Detection]. The TIC asks for the identification number for the track
in line 2 [Seeking Information], which the EWS provides in the next
line [Detection]. In line 4, the TAO suggests that they query the
track because it is heading toward the warship [Recommendation,
Track Behavior]. Meanwhile, the TIC orders the IDS to interrogate
a previously identified track, 7023, in line 5 [Deterrent Orders].
Responding to the previous recommendation from the TAO, the CO
orders a query sent to track 7037: "Conduct level one track 7037" in
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line 7 [Deterrent Orders], and the TAO passes this order to the TIC
in the next line. In line 9, the TAO recommends sending a warning
to a previously identified track, 7013, that has failed to respond
to a query [Recommendation, Status Update]. The CO orders the
warning and also orders that they "cover" the track with guns in
preparation for combat [Deterrent Orders, Defensive Orders].

This excerpt illustrates a typical pattern for this team-scenario.
Specifically, that the EWS provides critical information regarding
the detection and identification of tracks (e.g., lines 1 and 3), but
that the focus of the team interactions are between the CO, TAO,
IDS, and TIC as they process track information and take tactical
actions (e.g., lines 4-10).

In alignment with this example, our qualitative analysis found
that the social interactions of high-performing team-scenarios were
more focused on processing track information and taking tactical
actions, such as queries, warnings, and defensive positions. For
low-performing team-scenarios, we found that their social interac-
tions were more focused on seeking information about the tactical
situation, for example, asking for information about track behavior
or identification.

4.2 RQ2
To illustrate our findings for this research question, we present the
ENA, SNA, and iSENS networks for the team-scenario described
above. We also draw on prior ENA analyses of this dataset.

Figure 1 shows the ENA network for the team-scenario, the
ENA scores for individual team members (green points), and the
centroid (green-square). The positions of the network nodes and
the connections they define can be used to interpret the dimension
of this space.

On the left side are connections to codes related to process-
ing tracks: Seeking Information, Deterrent Orders, and so on. On
the right side are connections to Detection and Track Behavior.
This suggests that the first dimension distinguishes individuals in
terms of whether they focused on Track Processing versus Track
Information. Toward the top of the space are connections to Seek-
ing Information. Toward the bottom are connections to Defensive
Orders, Deterrent Orders, Status Updates, and Recommendations,
which relate to actions taken toward tracks. This suggests that the
second dimension distinguishes team-scenarios in terms of whether
they focused on Seeking Information versus Tactical Actions.

The ENA network indicates that this team-scenario made strong
connections between many of the codes. The location of all of the
ENA scores (save one) and the centroid in the lower left quadrant
of the space suggests that this team-scenario focused more on
Track Processing and Tactical Actions. The ENA score in the upper
right quadrant corresponds to the EWS, whose contributions were
more focused on Seeking Information and Track Information. These
results align with prior ENA analyses, which found that, on average,
high-performing team-scenarios focused more on Tactical Actions,
while low-performing team-scenarios focused more on Seeking
Information [26]. In turn, the ENA scores and centroids of high-
performing team-scenarios tend to fall in the lower half of the space,
while those for low-performing team-scenarios tend to fall in the
upper half.

Figure 1: Epistemic network, ENA scores, and centroid for
the team-scenario shown in the excerpt.

Figure 2: Social network for the team-scenario shown in the
excerpt.

Figure 2 shows the SNA network for the team-scenario. While
the placement of the nodes are arbitrary, the network shows that
most frequent communication occurred between the TAO, TIC, IDS,
CO, and Other, as indicated by the thicker and darker connections
between these nodes. Here, "Other" refers to training personnel
who played the role of external command and tracks during the
scenarios.

Figure 3 shows iSENS network for the team-scenario with the
dimensional interpretations added. The dimensions of this space
correspond to the dimensions of the ENA space shown in Figure
1, the nodes correspond to the ENA scores of the individuals in
Figure 1, and the edges correspond to social connections between
individuals in Figure 2.
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Table 3: Comparison between HLMs.

ENA SNA SENS iSENS
Model Intercept 1 2 WD 1 2 WD 1 2

I ENA-HLM 37.34* (0.65) 5.41 (4.20) -6.67 (3.51)
II SNA-HLM 38.84* (3.16) -0.06 (0.13)
III SENS-HLM 40.93* (3.00) 5.62 (4.10) -7.85* (3.35) -0.15 (0.12)
IV iSENS-HLM 37.59* (0.65) 7.37 (4.04) -6.97* (3.12)

() indicates standard error; * indicates p < 0.05

Table 4: 95% confidence interval and effect size for differences in mean SSE

Models Mean SSEs Difference in Means 95% CI Cohen’s d
(iSENS, SENS) (649.33, 666.70) -17.37 (-32.28, -2.46)* 0.30

* indicates a statistically significant difference

As in Figure 1, the green square is the centroid of the team-
scenario, and we can clearly see that EWS made cognitive con-
nections that were very different from the rest of the team. The
position of the EWS’s ENA score has the effect of moving the cen-
troid toward the upper right of the space. However, as illustrated
in the excerpt and shown in the edges of iSENS network, the EWS
interacted less with the team compared to others, while the most
frequent interactions were between the CO, TAO, TIC, IDS, and
Other. This asymmetry in the social network of the team is reflected
in the weighted centroid (blue square). The frequent interactions
between team members other than the EWS has the effect of mov-
ing the centroid toward the bottom left of the space. Put another
way, because the EWS interacted less with the team, their talk
contributes less to the representation of the team-scenario in the
epistemic space using iSENS.

Comparing these two statistics to the excerpt above, theweighted
centroid aligns more closely with the qualitative understanding of
the data: it describes not only the content of the communication
but the individuals who were most involved in those interactions.
Moreover, because high-performing team-scenarios tend to fall in
the lower half of the space and the weighted centroid places the
summary statistic for this team-scenario lower in the space, this
suggests that the iSENS statistic is a better predictor of performance.
Our next research question addresses whether this is the case more
generally for this dataset.

4.3 RQ3
While the findings above illustrate the interpretive value of iSENS,
the model comparisons using HLM tested whether this approach
also has statistical advantages. We found that only the SENS-HLM
and the iSENS-HLM had at least one statistically significant ex-
planatory variable. The coefficients and standard errors for each
model are shown in Table 3.

The SENS-HLM had one statically significant explanatory vari-
able: the position of the (unweighted) centroid on the second dimen-
sion of the ENA space. The negative coefficient (-7.85) indicates that
team-scenarios with higher teamwork scores focused on Tactical
Actions versus Seeking Information.

Figure 3: iSENS network for the team-scenario shown in the
excerpt.

The iSENS-HLM also had one statistically significant explana-
tory variable: the position of the weighted centroid on the second
dimension of the ENA space. The negative coefficient (-6.97) indi-
cates that team-scenarios with higher scores where characterized
by dense social interactions focused on Tactical Actions versus
Seeking Information.

While the interpretations of the two significant predictors are
similar, the iSENS predictor accounts for both the cognitive and
social patterns of connections made by the team-scenarios.

To test for differences between the two modeling approaches
with significant predictors, we used the bootstrapping procedure
described above. Table 4 shows the 95% confidence interval for the
difference in mean SSE between the iSENS and SENS models, as
well as effect size of the difference.

This mean comparison shows that the iSENS approach had the
lower mean SSE with an effect size of 0.30. The confidence interval
around the difference does not include zero, indicating that the
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performance of the iSENS model was significantly better than the
performance of the SENS model.

5 DISCUSSION
Our results suggest that teams in this context are characterized
by specific patterns of cognitive and social connections. ENA and
SNA were able to capture these patterns separately, but the iSENS
approach integrated them into a visual representation and summary
statistic that better aligned with our qualitative understanding of
the data. Moreover, our statistical results suggest that iSENS can
model team outcomes better than ENA alone, SNA alone, and (non-
integrated) SENS.

Our results have several limitations. First, this studywasmeant to
illustrate the value of iSENS. As such, we only present results using
CPS data from one context. From these results, we cannot conclude
that iSENS is a better approach for CPS data more generally. Second,
CPS processes occur in sequences that could be important to model.
While the approaches we used were sensitive to order due to the
use of moving windows, the models did not explicitly represent
sequence. However, previous analysis of this dataset has found that
a non-sequential model yields results that are statistically better
and more interpretable than a sequential model [26]. Finally, our
iSENS approach combined relatively simple SNA and ENA metrics.
More sophisticated SNA techniques could be used, such finding
latent team structures with mutually stronger or more reciprocal
ties. Similarly, more sophisticated ENA metrics could be used, such
as the deviation of team members’ ENA scores from the average
score of their role. Here however, we deliberately implemented
simpler techniques as a proof of concept. Our future work will
continue to test iSENS using data from different contexts, explore
the combination of sequential versions of ENA and SNA, and the
combination more sophisticated ENA and SNA techniques.

Despite these limitations, this work suggests that iSENS is a po-
tentially powerful technique for modeling CPS. Specifically, iSENS
makes two contributions. First, this approach streamlines the anal-
ysis of CPS by combining ENA and SNA into a unified technique.
This means that researchers who wish to conduct a network analy-
sis of both the cognitive and social dimensions of CPS no longer
have to run and coordinate two separate analyses. Second, and
more importantly, iSENS affords the simultaneous investigation
of the social structure of teams within a space defined by the cog-
nitive connections they made. In other words, this approach can
give insights into both the structure and content of collaborative
interactions, providing researchers a more complete understanding
of CPS.
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