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ABSTRACT 
This chapter describes the testing of the computer-human interface of Virtual Internship 
Authorware (VIA), an authoring tool for creating web-based virtual internships. The authors 
describe several benchmark tasks that would be performed by authors who create lessons on the 
subject matter of land science. Performance on each task was measured by task completion times 
and the likelihood of completing the task. Data were collected from ten novices and three experts 
familiar with the broader learning environment called Intershipinator. Task completion times 
and the number of steps to complete the tasks were also modeled by GOMS (Goals, Operators, 
Methods, and Selection Rules), a theoretical model that predicts these measures of user 
interaction based on a computational psychological model of computer-human interaction. The 
output from the GOMS simulations of task completion times and number of steps robustly 
predicted the performance of both novices and experts. Large deviations between model 
predictions and human performance are expected to guide modifications of the authoring tool. 

Keywords: Authoring Tool, Human-Computer Interaction, Learning Environments, Learning 
Strategies, Teaching Software, Virtual Learning, Virtual Internship Authorware 

INTRODUCTION 
One of the major bottlenecks in developing learning environments is designing authoring tools 
for subject matter experts to create content and recommended learning strategies (Murray, 
Blessing, & Ainsworth, 2003; Sottilare, Graesser, Hu, & Brawner, 2015). In an ideal world, the 
authorware would be so easy to use that the learning materials, curriculum, and pedagogical 



 

 

strategies could be created by a wide range of subject matter experts. Moreover, the experts who 
use the authorware would be able to create lessons even when they have modest expertise in 
digital literacy, minimal computer programming experience, and no more than intuitive 
knowledge of the science of learning. They would be able to assemble impressive learning 
environments that integrate text, diagrams, video, chat facilities, conversational agents, 
interactive simulations, and other materials that may already exist in different media, modalities, 
formats, and types of interaction. 

Unfortunately, that ideal remains elusive to developers of most advanced learning environments. 
Instead, subject matter experts typically provide content to computer programmers and 
pedagogical experts who end up being responsible for transforming the various materials into 
interactive learning environments. Improvements in authorware may only occur after developing 
a systematic scientific approach to conducting iterative testing and modification of the content, 
pedagogical strategies, and human-computer interfaces for the end users. 

This chapter describes our approach to improving the human-computer interface of the 
authorware for a virtual internship project called Internshipinator (Shaffer, Ruis, & Graesser, 
2015). The authorware is called VIA, which stands for Virtual Internship Authorware. We use 
the term authorware in a general sense here, duly recognizing that a software product from 
Adobe, called Authorware (http://www.adobe.com/products/authorware/), has existed for 
decades. VIA is a specific type of authorware that developers of learning environments can use 
to create virtual internships in a web-based learning environment.  

Virtual Internship Authorware (VIA) 
In one example, a virtual internship called Land Science (Bagley & Shaffer, 2015), students play 
the role of interns at Regional Design Associates, a fictional urban and regional planning firm. 
Their problem solving task is to prepare a rezoning plan for the city of Lowell, Massachusetts 
that addresses the requests of various stakeholder groups (business, environment, industry, or 
housing). The stakeholders have views on socioeconomic and ecological issues, some of which 
are incompatible. The students read about the different viewpoints and preferences of 
stakeholders and eventually prepare individual reports on how to handle competing concerns. 
While making these decisions, students discuss options with their project teams through online 
chat. They also use professional tools, such as a geographic information system model of Lowell 
and a preference survey to model the effects of land-use changes with feedback from mentors. At 
the end of the internship, students write a proposal in which they present and justify their 
rezoning plans. During this process, a mentor keeps the small group of three to four students 
moving forward, but does not encourage any particular solution to the problem solving tasks at 
hand. The ten-hour simulation environment is divided into fourteen rooms with different goals 
and objectives, as well as a chat capability associated with each room.  

Land Science is clearly a complex internship-based learning environment with many different 
learning resources, communication media, recommended agenda, and instructions. The author of 
the environment has to create all of this material for the virtual internship, which is quite a 
challenge. Authors with high expertise can readily meet the challenge, but most authors need 
more scaffolding and assistance from VIA. Authors with modest abilities can go a long way by 
taking an existing internship environment and modifying it to create new content and 
capabilities. At the very least, the human-computer interface and navigation facilities need to be 



 

 

sufficient for a broad range of users. The design of VIA was created to support authors of 
varying abilities. 

This chapter describes the testing of the human-computer interface of VIA. These tests consisted 
of benchmark tasks that are performed by authors who modified content on the subject matter of 
land science. Performance on each task was measured by task completion times and the 
likelihood of completing the task. Data were collected from ten novices and three experts who 
were familiar with Intershipinator. We also developed a model of ideal task completion times 
and the number of steps to complete the tasks with GOMS (Goals, Operators, Methods, and 
Selection Rules). GOMS is model that predicts these measures of user interaction based on a 
computational psychological model of human-computer interaction (Card, Moran, & Newell, 
1980, 1983; John & Kieras, 2006). The GOMS simulations of task completion times and number 
of steps were found to predict the performance of both novices and expert authors. The 
implications of this successful application of GOMS are discussed at the end of the chapter.  

Virtual Internships 
Internships are a valuable commodity for college students looking for practical experience in a 
difficult job market. Interns can gain valuable work experience by contributing to companies in 
ways that go beyond theory taught in classrooms, including managing disparate viewpoints and 
competing interests. A 2010 study concluded that college students who participated in 
internships were given more options of full time employment post-graduation (Gault, Leach, & 
Duey 2010). The Internshipinator project simulates these inevitable challenges that reside outside 
the purview of the textbook. It does this by providing the internship’s author a structured but 
flexible frameboard to populate the environment with content.  

The Intershipinator project specifically focuses on internships in STEM fields (Science, 
Technology, Engineering, and Mathematics). It embraces several key practices in conventional 
STEM internships. For example, good internships give interns authentic work assignments that 
represent the actual work in the field. The Land Science internship gives interns tasks and 
problems meant to closely follow real world land science and urban planning projects. 
Internships also commonly use intern managers to focus efforts and give foundational 
information. Internshipinator affords this engagement by including a mentor role. Moreover, 
collaborative problem solving is known to be a highly useful skill in workplace environments 
(NRC, 2011; OECD, 2013) so many internships purposely place interns together to test their 
collaborative skills. The Land Science internship echoes this by providing the interns a series of 
tasks that require collaborative learning and problem solving to properly find a solution to their 
assignment. High quality internships also evaluate the progress of interns empirically through 
intern interviews and assessments of the interns’ products. Internshipinator encourages all of 
these practices with entrance and exit interview options, computer-mediated communication, and 
products to be evaluated. These capabilities that are present in Internshipinator also need to be 
incorporated in the VIA tool. As already discussed, VIA was designed to allow a broad range of 
experts in a particular STEM field to author their own internships with minimal prior computer 
programming knowledge.  

Internships created through VIA need to consider three types of users: (1) the interns who use 
Internshipinator to learn, (2) the mentors who use Internshipinator to help the interns learn, and 
(3) the authors who use VIA to create Internshipinator. The author is the subject matter expert 
who designs the internship. Authors determine how internships progress, what materials to 



 

 

provide for both mentors and interns, and the environment in which interns operate. Although the 
authors create this material to facilitate the interns’ learning with the assistance of mentors, they 
often have little or no direct interaction with interns and mentors. Authors need to make sure that 
the internships they design follow a logical progression and have instructions that direct the users 
to achieve their respective end goals. For example, authors create helpful pre-generated prompts 
(i.e., verbal messages in emails or chat) for mentors to use during the process of facilitating 
interns in their learning. Authors create reference material to suit interns’ needs to receive 
relevant subject matter information in accomplishing tasks. Authors typically construct their 
internships in VIA by dividing the content structure into a series of modules called rooms; 
interns receive a single topic in each room and usually a task that is evaluated. That is, the 
material required for the task is attached to a room, including any specific pre-generated prompts 
that the authors believe would be useful to the mentor in guiding progress in the task. After the 
author has finished designing Internshipinator with VIA, the mentor administers and monitors 
Internshipinator through synchronous computer-mediate communication during the process of 
the interns interacting with Internshipinator. 

As mentioned, the mentors manage the internships and directly oversee their assigned interns. A 
mentor provides guidance and assistance as interns progress through tasks and they evaluate 
interns based on author specifications. The mentor may assume the role of a project consultant. 
Alternatively, the mentor may take on the role of a fellow intern and thereby appear to be a peer 
from the perspective of other interns. These options in roles permits flexibility in the interaction 
and allow both a cooperative and an authoritative role to direct progress, sometimes in tandem. 
In Land Science, for example, the mentor portrayed both a project consultant directly working 
with interns and also the project manager.  

The intern is the participant for whom the Internshipinator simulation was built. Interns are 
guided and assisted by the mentor and complete the tasks set up by the author. Interns are the 
“players” of this simulation environment. They collaborate with one another and follow the 
suggestions of the mentor to achieve the proficiency in the subject matter created by the author. 

It is apparent that the virtual internships like Land Science are complex learning environments 
with many facilities and a significant amount of technical content. It would be impractical and 
restrictively slow for new design teams to build the new internships from scratch. Therefore, a 
more practical approach is for the authors to modify an existing internship, such as Land 
Science, by substituting and adding content with the new subject matter. That requires authoring 
tools such as VIA in addition to the other components of Internshipinator. 

The GOMS Model 
The GOMS (Goals, Operators, Methods, and Selection Rules) model was developed in the early 
1980’s for measuring and predicting the performance of skilled, successful human-computer 
interactions with technology (Card, Moran, & Newell, 1980, 1983). The Psychology of Human-
Computer Interaction (Card et al., 1983) played a signature role in launching the field of human-
computer interaction because it was grounded in (a) a psychological theory of problem solving, 
namely Newell and Simon’s (1972) General Problem Solver, (b) a computational model of 
perception, action, and cognition, and (c) a large body of empirical research in human factors and 
human performance that had accumulated for decades. Just as important, the model could 
generate predictions on task completion times and errors for tasks on the basis of the device 
characteristics together with the model.  



 

 

Digital system designers frequently use GOMS modeling to predict task execution times and the 
usability of products (Gray, John, & Atwood, 1993; John & Kieras, 2006; Williams, Hultman, & 
Graesser, 1998). For example, Drury, Scholtz, and Kieras (2007) used GOMS to analyze human-
robot interfaces, Oyewole and Haight (2011) used GOMS to help novice users of website 
interfaces perform better, and Saitwal et al (2010) used GOMS to analyze the usability of 
interfaces for electronic health records. 

The GOMS model assumes that tasks are organized by a hierarchically organized set of goals. 
An operator is a specific action that is triggered by a particular perceptual pattern, performed in 
a particular way, and accompanied by cognitive processes. More specifically, each operator has 
one or more perception-cognition-action cycles with time parameters that can be estimated a 
priori based on research in cognitive engineering and human factors. A method is an organized 
set of operators that have achieved particular goals in the past. Selection rules specify which 
method is applied under particular conditions when multiple methods are possible. 

GOMS decomposes tasks and complex actions into their component parts and generates 
predictions on the completion times and steps for each task or action. The decomposition can 
have different grain sizes. At the most micro-level, for example, the keystroke modeling predicts 
the execution times of individual operators (Card, Moran, & Newell, 1980). At a mid-level, 
times can be predicted for performing methods or tasks at an intermediate level of abstraction 
(Gray, John, & Atwood, 1993). At the macro-level, times can be predicted for an entire complex 
task. 

Cogtool v1.2.2 
John (2013) developed a program (Cogtool v1.2.2) that allows researchers to generate 
predictions for the completion of tasks and actions on digital interfaces based on the GOMS 
model. This program prompts the researcher to specify interface screenshots, embedded widgets 
to mark operators and their functions, the operators to be performed, and other information that 
is beyond the scope of this chapter to describe. The sequence of operators chosen for a task are 
automatically compiled into a script that combines that operator’s individual times to compute a 
predicted time for the execution of the task. It should be noted that GOMS models an 
experienced user of the interface, not novices. Therefore, the sequence of operators that GOMS 
models is the smallest critical path to achieve the main goal of the task. 

METHOD 
Participants 
The novice participants were recruited from the University of Memphis pool enrolled in 
psychology courses, N = 10. Most of the students were freshman taking introductory 
psychology. The experts were three members of the research team who had experience using 
Internshipinator for Land Science. 

Materials 
Participants completed testing in a computer lab. They scrolled through a PowerPoint orientation 
with audio and text. Testing proceeded on the VIA tool. Cogtool was used to simulate the actions 
taken by testers of the VIA interface as accurately as possible.  

Procedure 



 

 

As discussed in the next section, the testers were asked to perform a series of benchmark tasks 
that manipulate various aspects of the interface in order to achieve specific goals. The times 
collected from the participant testers were correlated with the ideal items for each task, based on 
Cogtool. The ideal time is the quickest time possible with the fewest number of mouse clicks. 
That is, the ideal time was computed as Cogtool’s estimation of the quickest possible path to 
complete the task with the interface. The screen shots of the VIA interface were uploaded to 
Cogtool. Next, “widgets” were attached to the interface objects in a given task to allow for 
Cogtool to simulate their use. Lastly, we input to Cogtool the correct operations list: the interface 
objects to manipulate in order to correctly complete the task in the shortest amount of time. 
Following Saital et al. (2010), we used the minimum number of clicks and execution times as our 
theoretical predictor variable. 

Table 1 shows an example predicted task completion time and a sequence of operators when we 
used Cogtool to model a task in VIA. The predicted task completion was 28.9 seconds for the 
task. Each row is a step in the procedure that contains a visual interface frame, the action 
performed (e.g., move mouse, click, think), and the widget device on the interface. A script step 
list (as in Table 1) was prepared for each benchmark task in the tests of VIA. 
 
Table 1. Script of Frames, Actions, and Widget Devices in a GOMS Model for VIA 
 

  Script Step List Visualization  

Frame Action Widget/Device 

Frame 2 [2] Move Mouse Upload (Widget 3) 

Frame 2 [2] Left Click Upload (Widget 3) 

Frame 4 Think for 1.200 s   

Frame 4 Move Mouse ddm (Widget 1) 

Frame 4 Left Click ddm (Widget 1) 

Frame 4 Think for 1.200 s   

Frame 4 Move Mouse Final p (Widget 2) 

Frame 4 Left Click Final p (Widget 2) 

Frame 5 Move Mouse D:7 (Widget 1) 

Frame 5 Left Click D:7 (Widget 1) 

Frame 6 Think for 1.200 s   

Frame 6 Move Mouse Resource (Widget 1) 

Frame 6 Left Click Resource (Widget 1) 

Frame 7 Think for 1.200 s   



 

 

Frame 7 Move Mouse Create resource (Widget 1) 

Frame 7 Left Click Create resource (Widget 1) 

Frame 7 Home Keyboard   

Frame 7 Type ‘title’ Title (Widget 2) 

Frame 7 Type ‘link name’ Link name (Widget 3) 

Frame 7 Look at Map (Widget 4) 

 
Benchmark Tasks in test of VIA 

Table 2 lists 20 benchmark tasks that the participants performed in our testing of VIA. The tasks 
were approximately ordered by complexity, with initial tasks orienting the participant to the 
system. The later modification tasks required changes to the Land Science internship structure 
that mimic the steps and actions an author would go through during the process of editing an 
internship. Tasks 3 and 4 are not included in Table 2 because those tasks simply involve reading 
about information to orient them to the system. 

A deep understanding of these tasks would of course require visual depictions of the interface. 
Unfortunately, the project was in the early phases of iterative development so the quality of the 
visual depictions was not sufficient to be reproduced in this chapter. It is the later stages of 
iterative development when attention is typically given to the aesthetics of the font, color, 
resolution, menu layouts, window borders, and so on. 

Some of the tasks had two phases. Phase 1 involved the testers completing tasks without 
assistance. Phase 2 followed only if they failed phase 1. That is, if they failed to complete phase 
1 within 20 seconds, they received phase 2 where they were given hints (including texts, visuals, 
or screen shots). However, the final task 20 had to be completed without any assistance. The 
tasks were selected to capture tasks with actions that an author would perform while creating or 
modifying an internship using the VIA software. The tasks did not require much time to perform 
individually, with most requiring a relatively low number of clicks and mouse movements. 
 
Table 2. Benchmark Tasks in Tests of VIA 
 

Task 
Number 

Task Description 

Task 1 Log in to the VIA using provided password and username. 

Task 2 Select correct Land Science frameboard for Editing. 

Task 5 Select any tab in the Global Panel to reinforce the knowledge of the location 
of the global panel. 

Task 6 Close the tab in the global panel. (This is very important to know because any 
tab open in the Global Panel hides the Compiled View) 



 

 

Task 7 Use drop down menu to select RFP (Request for Proposal) room for editing. 

Task 8 View the deliverables in the RFP by locating the deliverables tab in the 
Compiled View. 

Task 9 Select the rubric text for editing in the Compiled View. (This task begins the 
process of emphasizing the connection between the Compiled View and the 
Dependency View). 

Task 10 Edit selected text from last task in the text box in the Dependency View. 

Task 11 Locate the list of resources which can be found in the Global Panel. 

Task 12 Select the invite email in the final proposal room. (This task requires the tester 
to once again change rooms and remember that the invite email is located in 
the Compiled View). 

Task 13 View and close feedback in the Global Panel. 

Task 14 Change the notebook section type. (This task requires the tester to look deeper 
in the VIA as they search for the notebook tab in the dependency tree and 
change the section type). 

Task 15 Modify paragraph in invite email. (Like tasks 9 and 10, the tester must click 
the text in the Compiled View and edit in the Dependency View. However, 
now the tester is expected to be able to do so without much guidance). 

Task 16 Edit notebook section in deliverable 2. (The tester must again dive into the 
VIA by changing the deliverable that is visible in the dependency tree, locate 
the notebook section and edit some part of it such as the notebook title). 

Task 17 Upload a pdf. (The testers must remember that resources contain all pdf files 
and are located in the Global Panel. They must then locate the upload tab and 
select the correct pdf to upload). 

Task 18 Add pdf to invite email in deliverable 2. (This requires the tester to drag and 
drop the pdf into the resource box of deliverable 2 in the dependency tree). 

Task 19 Edit necessary text. (The tester has knowledge of how to properly edit text, 
but must find where the information for resources is mentioned in the rubric 
and add additional text referring to the newly added pdf). 

Task 20 Add a map to deliverable 7 and edit the necessary text in the final proposal 
room. (This task has no hints because the testers must now use all of their 
acquired knowledge to complete it). 

 
 



 

 

An overview of the series of tasks conveys the scope and sequence of the benchmark tasks. 
Tasks 1 and 2 prompt the tester to log into the system proper and access the correct frameboard 
to edit. Tasks 3 and 4 give details about the user interface and familiarize testers with the names 
and locations of important functions. Task 5 begins the VIA interface interaction in earnest. It 
shows the tester how to open and close the Global Panel, a vital part of VIA. From there the 
tester learns how to navigate between rooms. Tasks 7-16 focus on the association of a 
“Deliverables Tree/View” in the center of the screen with a “Compiled View” on the right of the 
screen, which shows a more polished view of content in the Deliverables View (more so what an 
end user would see). After a quick stop back in the Global Panel to learn about the resources 
subtab, the testers’ attention is drawn toward the Compiled View. These tasks include actions 
such as locating a particular text in the Invite Email, modifying texts in the rubric, and changing 
notebook sections in the Dependency Tree. In tasks 17-19, the tester explores the interface 
widely, from the Global Panel, to the Dependency View, and to the Compiled View. The tester 
must use their knowledge of navigating the VIA to load files and edit sections appropriately to 
incorporate instructions for the added information. These tasks emphasize the intimate 
relationship between the Compiled View and Dependency View areas of the VIA. The final task 
20 then attempts to utilize as much of the system as possible, while approximating a realistic task 
an end user would perform. This task required the most clicks (11) to complete. 

RESULTS 

We collected data from two groups of testers. The expert group included three members of the 
research team who were experienced users of Land Science. These three experts completed all 
20 tasks successfully. The novice group included ten undergraduate college students who were 
taking an introductory psychology course and completing the experiment for course credit. 
Testers in the novice group did not always successfully complete each of the 20 tasks. For these 
students in the novice group, we computed the number of students out of ten who successfully 
completed the task as one measure of performance. For all testers, both experts and novices, we 
computed task completion times as a measure of performance. We compared these performance 
measures to two theoretical predictions of the GOMS model: GOMS task completion time and 
GOMS clicks to complete the tasks (i.e., functionally similar to number of steps on the critical 
path to the solution). 

Table 3 shows the above measures for 18 of the 20 tasks in our testing of VIA, noting once again 
that the reading tasks 3 and 4 were excluded. There are two GOMS measures (time and clicks), 
two human task completion times (experts versus novices), and the frequency out of ten of 
novice task completions. 
 
Table 3. GOMS and Tester Performance Measures on VIA Tasks 
 

Task 
GOMS 
Time 

GOMS 
Clicks 

Expert 
Times 

Novice 
Times 

Novice 
Completion 

1 10.00 3 38.9 121.2 10 

2 10.00 2 26.1 161.9 9 



 

 

5 10.00 1 12.5 104.4 6 

6 10.00 2 11.8 57.0 6 

7 12.15 2 13.3 150.1 5 

8 10.00 1 14.6 81.2 4 

9 14.00 1 11.2 92.9 2 

10 14.00 1 26.6 359.7 1 

11 4.60 1 12.0 92.8 5 

12 12.50 3 18.1 64.8 2 

13 9.30 2 13.8 87.3 5 

14 5.20 3 16.9 56.2 1 

15 25.30 3 33.6 603.3 1 

16 8.30 3 66.8 428.0 3 

17 15.30 6 29.2 162.0 3 

18 12.00 6 80.9 438.0 3 

19 11.80 3 59.0 178.7 3 

20 28.90 11 141.6 245.0 2 

Mean 12.4 3.0 34.8 193.6 3.9 

SD 6.0 2.5 33.7 158.8 2.6 

 
  
A quick analysis of the testers’ results and the GOMS model show that as users progressed 
through the tasks, completion times increased. This reflects the corresponding increase in 
difficulty. Early tasks had high completion rates, but these numbers went down as novice users 
encountered tasks that required more clicks to be completed. The novice times should be 
interpreted with great caution, however, because it is only the completers who are counted. 
Indeed, the more astute testers may have been the ones who managed to complete the tasks. 
Nevertheless, we report their time data. 

We conducted correlational analyses on the data displayed in Table 3. A correlation of r = 0.40 
would be statistically significant (p < .05) when considering the 18 tasks as a unit of analysis and 
the mean scores listed in Table 3. We acknowledge the small sample size, but note the promising 
magnitude of the observed relationships. 

Consider first the expert testers, the primary target of the GOMS model because GOMS predicts 
knowledgeable users of the interface who have experience with the environment. All three 



 

 

individuals completed the tasks. These task completion times for these experts had a strong 
correlation with GOMS time (r = 0.59) and number of GOMS clicks (r = 0.87). Interestingly, the 
expert times had a significant correlation with novices who were skilled enough to complete the 
tasks (r = 0.46). Therefore, the GOMS model accurately predicts performance (time and clicks) 
when the testers reach a reasonable threshold of performance. This, once again, is what the 
GOMS model was developed to explain: performance when the user is sufficiently skilled. In 
contrast, performance while the user is learning of the interface is not within the scope of 
GOMS. 

Nevertheless, we can ask the question of whether GOMS can predict novice performance. There 
is a modicum of success, but (as would be expected) not as impressive as the experts. The 
GOMS time does significantly predict the novices’ task completion times (r = 0.51) but the 
GOMS clicks fell just short of significance at the p < 0.05 level (r = 0.39). The results are still 
quite promising on the value of GOMS with regard to novice performance. We also analyzed the 
novice completion likelihoods in the right column and found them to be uniformly in the 
predicted direction, i.e., more time and complexity negatively correlated with the likelihood of 
task completion. That is, the task completion likelihoods were negatively correlated with GOMS 
time (r = -0.39) and GOMS clicks (r = -0.25). 

As we look at the data in Table 3, we note some large deviations between GOMS time 
predictions and those of novices. For example, novice times are over 25 times longer than 
GOMS predictions for task 10. These discrepancies may prove particularly informative for the 
designers of human computer interfaces because they identify areas where the interface is most 
in need of improvement. Examining the tasks with large differences, we see that students who 
did not carefully review early tasks explaining panels and their functions did poorly on later 
tasks such as 10-17 which required them to apply that knowledge. Some students unintentionally 
skipped early tasks, attributable to the lack of a “Back” button in the testing interface. Utilizing 
uninitiated participants with no particular computer skills invites mistakes and 
misunderstandings that would never occur to experts. The GOMS model predictions provide 
quantifiable markers for these stumbling blocks, helping to diagnose interface problems and 
guide modifications of authorware in the process of iterative development. 

CONCLUSION 

It is reassuring that the GOMS model performed quite well in predicting the performance of both 
expert and novice users of the Virtual Internship Authorware (VIA). The number of GOMS 
steps, as measured by user clicks, was also promising, although to a lesser extent for novice users 
in contrast to the near perfect correlations with experts (r = 0.87). There of course may be other 
measures from GOMS that may prove more promising, but we were encouraged by these results 
on the value of the GOMS model in early phases of our development of VIA. 

In our view, it is the deviations from GOMS predictions that are noteworthy for modifications of 
authorware like VIA. There are problems when the task completion times of VIA experts or 
novices are substantially higher than those of GOMS. What explains these aberrations? One 
likely culprit is time spent in cognitive processing rather than physical movement. It may be 
something as simple as unexpectedly slow reading speed, for which GOMS modeling does not 
compute by default.  Alternatively, the cues on the interface may be hidden, which confuses the 
author and suggests the need for more salient control features. Perhaps the author is looking at 



 

 

the wrong place on the display, suggesting a reorganization or co-location of functional objects. 
Perhaps the author has trouble interpreting a particular label, icon, or symbol, necessitating a 
redesign more in line with intuitive constructions. Hypotheses (e.g., the downstream implications 
of not having a “Back” button) can be generated that attempt to explain large deviations from 
GOMS predictions, a signal of interface pathologies. When the author experiences trouble, the 
designers can consider various modifications and improvements. Further experimentation is then 
conducted in A-B testing that compares the old interface with the new interface that attempts to 
correct the problems. Consequently, both successes and failures of GOMS are helpful in guiding 
interface design on complex learning environments like VIA. 
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KEY TERMS AND DEFINITIONS 

Authoring Tool: Software to assist authors who create a specific type of program. 

GOMS model : "a set of Goals, a set of Operators, a set of Methods for achieving the goals, and 
a set of Selections rules for choosing among competing methods for goals" (Card, Moran, & 



 

 

Newell, 1983) that provide qualitative and quantitative predictions how users will interact with a 
system.  

Human-Computer Interaction: A field of research that investigates the functional coordination 
between human cognitive characteristics and computer software.  

Internshipinator: A project that develops and tests virtual internships in science, technology, 
engineering, and mathematics, with the aim of broadening educational experience.  

Learning Environments: A situation (real or virtual) that is designed to help individuals learn.  

Learning Strategies: Plans put in place by educators or students to facilitate student learning.    

Teaching Software: Software intended to facilitate and enhance learning. 

Virtual Internship Authorware: An authoring tool that allows those without coding experience 
to create and modify virtual internships. 

Virtual Learning Environment: A Web-based platform for the digital aspects of courses of 
study, typically affording participant cohorts and including activities and interactions (Weller, 
2007). 

 


