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INTRODUCTION 

Both military and civilian work is increasingly organized around small, dynamic teams rather than large 
bureaucratic frameworks. Such teams combine individuals with highly specific skill sets and extensive 
training to solve complex, non-standard problems, often under extreme pressure. Importantly, these teams 
are not typically composed of interchangeable members but are formed and trained as expert teams to 
function semi-autonomously. To accomplish mission objectives in the face of complex challenges, the 
United States military needs to develop teams that consistently exhibit high levels of taskwork and 
teamwork skills. Implementing principles of team training and maintaining team efficacy are critical in 
the armed forces, where teams are often widely dispersed and consequences for underperformance can be 
severe, though many civilian teams—such as hospital trauma teams or flight crews—face similar 
challenges. Establishing and maintaining high levels of team performance in these contexts requires the 
creation of practical and effective team development interventions, including team training, as well as 
systems for ongoing assessment of team function. 
 
We argue that one critical component of training, monitoring, and maintaining high-functioning teams is 
the ability to model team performance. 
  
Communication, cognition, coordination, collaboration, and coherence in teams are critical for predicting 
team performance. To improve our ability to enhance and maintain team performance, we need to 
develop a better understanding of these components. Specifically, we need to understand how the 
components of team dynamics influence team performance in complex problem-solving situations (Fiore 
et al., 2010; O’Neil, Chuang, & Baker, 2010; Paris, Salas, & Cannon-Bowers, 2000; Salas, Cooke, & 
Rosen, 2008). However, current tools and methods lack the capacity to assess these components of 
teamwork, to the dismay of stakeholders. This is true in the armed forces, industry, government, and civic 
organizations, and it has motivated national and international assessments of teamwork and collaborative 
problem solving as a 21st-century skill. 
 
In what follows, we outline a program of research on the science of teamwork, based on a theoretical 
framework for analyzing the decision-making processes and effectiveness of teams. Drawing on our prior 
work developing critical constructs and mechanisms to measure team performance using multilevel 
network analysis, we argue that one critical advance in the science of teamwork is using these tools to 
build predictive models that consider teams as complex systems. To model team performance effectively, 
we need to understand teams as multilevel networks comprised of three main components: (a) the social 
network that structures team interactions; (b) the conceptual networks that guide the actions of individuals 
on the team; and (c) the communication network by which that action is accomplished. A critical step in 
creating a system to monitor and support team performance, then, is the development of multilevel 
network analysis techniques for assessing teamwork during complex problem solving. 
 



 
 

HIGH-PERFORMANCE TEAMS IN MILITARY AND CIVILIAN WORK 

Two factors have made analysis of the performance dynamics of small teams critically important to 
current and future U.S. military endeavors. First, the nature of armed conflict has shifted in the last 50 
years from large-scale machine warfare organized around regiments of conventional forces, in which 
combat and intelligence gathering present relatively standard problems (materiel domain), to small-scale 
asymmetric warfare organized around small teams of special forces, in which counter-insurgency and 
other elements of unconventional combat present non-standard, highly complex problems (human 
domain). Second, budget cuts, the current geopolitical landscape, and changes in military priorities have 
led to reorganization of operations around small, dynamic teams engaged in counter-terrorism, 
cyberwarfare, drone operations, foreign internal defense, peacekeeping, and humanitarian aid (Knoke, 
2013; Odierno, Amos, & McRaven, 2013; Ressler, 2006; Stewart, 2013; Thomas & Dougherty, 2013; 
Tucker & Lamb, 2007; Turnley, 2011). 

Today’s small military teams, such as four-member Navy Special Warfare squads or twelve-member 
Army Operational Detatchment-A teams (Feickert, 2010; McRaven, 1996), combine individuals with 
highly specific skill sets and extensive training to solve complex, non-standard problems under extreme 
pressure. Importantly, teams such as these are not composed of interchangeable soldiers embedded in 
rigid bureaucratic frameworks—as in the squads of conventional military organization. Rather, these 
teams are formed and trained as expert teams to function semi-autonomously (Thomas & Dougherty, 
2013). 
 
Of course, this approach is not limited to military organizations. Civilian work, too, is increasingly 
structured around small, high-performance teams (Buchholz, Roth, & Hess, 1987; Katzenbach, 1993; 
Lehman & DuFrene, 2010). Hospital trauma teams, emergency response teams, flight crews, design 
teams, and research teams, among others, are core organizational units in many contexts. While civilian 
teams may not face the same pressures as military teams, performance is often equally dependent on the 
extent to which the members function as a team. 

TEAMS AS MULTILEVEL NETWORKS 

A central challenge in understanding team performance is to integrate understanding of how a team 
collaborates with information about what they are collaborating on. For example, high-functioning teams 
“communicate clearly”, but in order to assess whether a team is performing well, we need to know more 
than just that they are communicating well. We also need to know that they are communicating 
effectively about particular aspects of the specific problem they are working on, and that their approach 
to the problem is appropriate for the specific circumstances in which they are working. 
 
That is, to measure team performance, we need a technique that can measure critical aspects of team 
performance, including those articulated in the PISA 2015 Collaborative Problem Solving Framework 
(Greiff, 2012; Organization for Economic Co-operation and Development, 2013) and various frameworks 
of 21st-century skills (Griffin, 2012; Koenig, 2011; Kozma, 2009; Trilling & Fadel, 2012). These aspects 
include (a) how well a team collaborates in terms of social and cognitive alignment; (b) how well a team 
functions in a problem-solving context, including alignment with organizational factors and team 
outcomes; (c) how well each individual contributes to creating cognitive, social, and organizational 
alignment and team outcomes; and (d) the relationships among and integration of these factors. 
 
Put another way, we need to understand, simultaneously, the social network of the team, the conceptual 



 
 

networks that guide the actions of the individuals on the team, and the communication network by which 
those actions are accomplished. Thus, we argue that a critical step in creating a system to monitor and 
support team performance is the development of network analysis techniques for assessing teamwork 
during complex problem solving. Specifically, we suggest that the science of teamwork needs research 
into methods for constructing multilevel network models of high-volume discourse data (Frank, 1998, 
2011; Penuel, Riel, Krause, & Frank, 2009; Wang, Robins, Pattison, & Lazega, 2013). By “discourse”, 
we refer to spoken interactions, but also more broadly to any actions or interactions of team members and 
others in the problem-solving context (Gee, 1999). Our goal is to develop network analysis techniques 
that account simultaneously for the cognitive, social, and communications networks that comprise team 
activity and within which a team functions. 

NETWORK MODELS OF TEAMWORK 

Our approach is to start with epistemic network analysis (ENA), a technique that we have developed to 
analyze records of individual and team problem solving (Shaffer, 2017; Shaffer, Collier, & Ruis, 2016; 
Shaffer & Ruis, 2017). A fundamental claim in this work is that it is essential to consider the semantic 
and conceptual content of what gets said during social interactions in addition to tracing the patterns of 
who talks to whom in a social network. Social network models devoid of content are doomed to fail 
because team interactions are never “content neutral” (Maroulis & Gomez, 2008). It is impossible to 
evaluate the quality of team interactions by examining who is talking to whom without knowing what 
they are talking about. This work is thus unique in combining deep analyses of both content and social 
network processes. 
 
Specifically, ENA models team activity by identifying categories of action, communication, cognition, 
and other relevant features and characterizing them with appropriate coding schemes into smaller sets of 
domain-relevant nodes. The weights of the connections among network nodes (i.e., the association 
structure of key elements in the domain) are then computed and visualized. Critically, ENA models team 
actions and interactions in such a way that it is possible to extract information about each team member’s 
contributions to team performance. ENA uses statistical and visualization techniques to enable 
comparison of the salient properties of different networks, including networks generated by different 
teams or by teams at different points in time, teams in different spatial locations, or teams engaged in 
different activities. These salient properties are modeled not just in terms of the general structure of the 
networks, as is often revealed by other network analysis techniques (changes in density or betweenness 
centrality, for example), but ENA also extracts properties relevant to the actual content of the network. 
 
In other words, ENA can analyze what teams are doing, how they are thinking about what they are doing, 
what role individuals are playing in team performance, and how teams compare to one another in the 
context of real problem solving. Using ENA, we have been able to identify critical patterns of interaction 
in expert and novice teams, as well as successful and unsuccessful teams and individuals (Andrist, 
Collier, Gleicher, Mutlu, & Shaffer, 2015; Arastoopour, Shaffer, Swiecki, Ruis, & Chesler, 2016; Chesler 
et al., 2015; Quardokus Fisher, Hirshfield, Siebert-Evenstone, Arastoopour, & Koretsky, 2016; Shaffer, 
2017; Sullivan et al., in press). 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

A critical next step in developing a science of teamwork is to extend ENA from modeling team 
interactions in a single modality (communication among team members) to account for the different 



 
 

layers of activity that influence a team’s work. Factors we believe can and should be modeled include: 
(a) cognitive and psychological factors of team members and of the problem being solved; (b) modes of 
communication, including synchronous and asynchronous interactions; (c) the organization and structure 
of the team, as well as the influence of role and hierarchy within the team; (d) social relationships and 
interactions among team members; and (e) organizational and other external influences on the team’s 
activities. 
 
To accomplish this, we hypothesize that we will need to make three significant advances in the network 
science of teams. First, we will need to extend our existing natural language processing coding algorithms 
for text dialog. That is, we will need to develop machine learning and other techniques to quickly and 
reliably develop, calibrate, and implement coding schemes for a wide array of discourse data, including 
both text and spoken dialogue. Building on existing computational linguistics technologies, such as Coh-
Metrix (Graesser et al., 2014; Graesser, McNamara, & Kulikowich, 2011) and LIWC (Pennebaker, Booth, 
& Francis, 2007), we will augment the existing natural language processing capabilities of ENA to 
develop a version of the tool that can code diverse data streams for multilevel analyses. 
 
Second, we will need to examine how we can most appropriately model the social, cognitive, and 
communicative processes by which connections in those networks are constructed. That is, we will need 
to develop a more robust scientific understanding of how to identify and model the links between ideas 
and between people that individuals make during team problem solving (Dillenbourg, 1999). 
 
Third, we will need to develop multilevel ENA (mENA) network models. We conceptualize these mENA 
models as the network science analog of hierarchical linear modeling, where the effects of each layer of 
the model are analyzed, but critically, those analyses account for the interactions between the different 
layers of the model. For example, prior work has looked at integrating hierarchical linear modeling and 
social network analysis to examine how social factors influence students’ school achievement (Frank, 
1998). Similarly, mENA would be able to model the network of cognitive relations for each member of 
the team, but also account for the nesting of these individual cognitive models in the team setting. mENA 
would also be able to model the impact of individuals’ cognitive and affective states on social interactions 
and relations among team members. 
 
As part of this work, we will also explore ways to integrate mENA into systems for team training and 
development, such as training modules developed with GIFT, the Generalized Intelligent Framework for 
Tutoring (Sottilare, Brawner, Goldberg, & Holden, 2012). For example, mENA could be used to model 
expert teamwork and behavior based on observations gathered across an array of high-performing teams. 
In these instances, aggregating relevant mENA features across problem-solving scenarios can produce 
rich network models that will organize the actions, communications, and contextualized decision points 
that need to be explicitly defined within GIFT’s domain module. Designating relationships between 
information, communication, and action across roles within a team provides rich inputs for structuring 
and configuring an associated Domain Knowledge File that manages assessment and pedagogical requests 
during a GIFT-managed scenario event. Through these techniques, one can determine whether high-
performing teams execute tasks in similar ways (i.e., they have similar mENA networks), which could 
warrant more general claims about team performance, or whether there are unique differences across 
different teams or different teamwork scenarios. The same techniques can be applied to novice and low-
performing teams to identify common challenges. 
 
Following the development of an mENA expert model, mENA could be used to assess specific team 
activities in comparison with the expert model. This will enable functional evaluations of teams that are in 
training against representations of ideal behavior; as discussed above, mENA is particularly well suited to 



 
 

make such comparisons, both statistically and visually. Differences in mENA models that reflect critical 
cognitive, communicative, or enactive behaviors could thus assist in establishing granular assessment 
methods that can inform coaching decisions. With respect to GIFT, this involves making strategy 
selections that associate with directed feedback delivered in real-time, scenario adaptations that focus on 
adjustments in difficulty and complexity, and post-event scenario selections to target specified skill sets 
that require additional training or practice. 
 
Ultimately, our goal is to produce a system for training and maintaining high-performance teams that 
(a) enables easy creation of training modules that (b) provide teams with realistic simulations of problem-
solving scenarios and (c) generate mENA models that give team members and coaches actionable 
feedback. 
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