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Abstract. When text datasets are very large, manually coding line by line
becomes impractical. As a result, researchers sometimes try to use machine learn-
ing algorithms to automatically code text data. One of themost popular algorithms
is topic modeling. For a given text dataset, a topic model provides probability dis-
tributions of words for a set of “topics” in the data, which researchers then use
to interpret meaning of the topics. A topic model also gives each document in
the dataset a score for each topic, which can be used as a non-binary coding for
what proportion of a topic is in the document. Unfortunately, it is often difficult to
interpret what the topics mean in a defensible way, or to validate document topic
proportion scores as meaningful codes. In this study, we examine how keywords
from codes developed by human experts were distributed in topics generated from
topic modeling. The results show that (1) top keywords of a single topic often con-
tain words from multiple human-generated codes; and conversely, (2) words from
human-generated codes appear as high-probability keywords in multiple topic.
These results explain why directly using topics from topic models as codes is
problematic. However, they also imply that topic modeling makes it possible for
researchers to discover codes from short word lists.

Keywords: Coding · Grounded coding · A priori coding · Automatic coding ·
Grounded theory · Qualitative analysis · Quantitative analysis · Latent semantic
analysis · Topic modeling · Code discovery

1 Introduction

One of the most important steps in a quantitative ethnographic analysis is linking evi-
dence to meaning. In general, coding is an analytic process that searches for relevant
features within a dataset and assigns meaning to a given piece of evidence [8, 29]. There
are both many traditions of coding as well as many ways that researchers engage in the
process of coding. Researchers may generate codes from data, theory, or a literature
review of a field. In this process, researchers engage in a number of steps and make
many decisions. For example, in a single analysis, researchers make decisions about
the underlying data including choosing, cleaning, segmenting, assigning meta data, and
other choices that affect the resulting data and codes. Further, researchers perform many
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operations on a code or a set of codes including identifying, naming, organizing, cat-
egorizing, aggregating or disaggregating, refining, validating, and applying the codes.
Throughout this process, the ultimate goal of coding is to engage in a rigorous procedure
to warrant a meaningful story about the data [33].

The process of developing codes thus depends on reading data deeply; this is what
allows researchers to discover what is happening in a given context. However, this
process is quite difficult and time-consuming [24]. Machine algorithms, in contrast, can
read data quickly and discover patterns that researchers may have missed. However,
machine algorithms read data without understanding its meaning deeply, and thus may
produce codes that don’t describe the data in useful ways [32].

Fundamentally,we argue that because coding is a process of searching formeaningful
patterns in data, it may be best suited by combining the talents of humans and machines.
In this paper, we explore the iterative process of identifying and developing codes.
Then we explore how machine learning methods can supplement code discovery and
refinement rather than replace meaning-based processes of coding.

2 Background

2.1 What are Meaningful Patterns?

Building on the idea of thick description, or explanations of action in terms of their
socially-situated meanings, Geertz (1973) argues that, fundamentally, data analysis “is
sorting out the structures of signification” and then “determining their social ground
and import” (p. 9) [17]. Consequently, researchers sort and interpret their observations
to discover what is happening in a given context, in light of how participants would
understand and describe it. As Ryle and Geertz [17, 31] argue, one common way to
engage in this process is by creating codes.

Many researchers may employ a grounded approach to coding: intensively reading
and rereading qualitative data to discover and construct theory and codes from it [18,
32]. Researchers engage in a rigorous and systematic search for meaning [25] to find
patterns, where some phenomenon repeats in a predictable way. Only by finding and
comparing such patterns can a researcher begin to identify and distinguish codes.

Many factors influence how a researcher makes sense of data. Each researcher brings
a different set of experiences and identities to their work, which may help them find
certain descriptions and miss or disregard others. To address this problem, a common
heuristic for developing codes is to start by describing each line of data, which, as
Charmaz argues, “helps you to refrain from inputting your motives, fears or unresolved
personal issues to your respondents and to your collected data” (p. 37) [10].

A grounded coding process iterates through open, axial, and selective coding. Open
coding, or coding line by line, breaks down data to identify preliminary concepts. These
early descriptions provide the basis for future interpretations [33]. Next, researchers
begin making connections between ideas while comparing concepts and categories
during axial coding. In this step, there is more emphasis on identifying features and
conditions that may explain what is happening or provide contextual information. Inter-
pretations become clearer during selective coding where researchers build a conceptual
framework to understand the relationships among the codes.
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Successful coding, then depends of researchers’ ability to construct interpretations
and build meaningful models. But that ability, in turn, depends on the ability to find
systematic patterns in data, and in this aspect of coding, computers are often much more
efficient than human coders. A machine can quickly go through a large volume of data
to identify patterns or group similar patterns together.

At the same time, themachine learning algorithms often used for such pattern finding
suffer from different problems. Chen and colleagues [11] outlined various challenges in
using machine learning for qualitative data analysis: such methods are often unable to
build useablemodels, use decontextualized features, require large amounts of data and in
some cases prelabeled data, and tend to perform better on high frequency codes in com-
parison with more sparse codes. Thus, a machine learning approach to pattern-finding
may not result in good codes or interpretations of data: patterns may be systematic, but
they may not be meaningful.

In this paper, we argue that good storytelling, and thus good coding, requires iden-
tifying meaningful patterns in your data. By combining the systematic pattern-finding
abilities of computers with the human ability for meaning-making, we explore how
researchers can combine qualitative data analysis with machine-learning to discover
codes and refine our coding process.

2.2 Computer-Facilitated Coding

Large scale text-based data is increasingly easier to find. In the field of education, large
scale text data is often collected from online learning environments, such as MOOCS
[14, 22, 28, 36–38], intelligent tutoring systems [1, 6, 9, 19], virtual internship systems
[12, 13, 35], and others.

Broadly speaking, two classes of computational tools have been developed to help
researchers code large scale data. One class of tools copy manual, paper-and-pencil-
based processes into a screen-and-mouse environment. Manual coding systems such as
NVIVO and MAXQDA support coding through better data organization, quicker data
navigation, more convenient ways of highlighting data segments, and visual displays
of the coding process and results. While it is more convenient to use such tools then
paper-and-pencil, researchers still have to go through the data line-by-line to mark all
possible instances of a code.1 Coding systems like the Reproducible Open Coding Kit
[27] help users prepare and annotate data for future modeling, including data that was
manually coded using one of the systems listed above.

A second class of computational approaches includes tools such as the nCoder [8,
15] and LightSide [23], which augment the coding process by introducing statistical and
machine-learning tools. In the next section we explore how this class of tools affects the
coding process by describing the functionality of nCoder.

2.3 Coding and Validating Through nCoder

nCoder is a tool that helps researchers develop, validate, and apply automated classifiers
to their data. It uses an activemachine learning approach aimed atmaximizing the impact

1 Some of these systems also include rudimentary keyword-based searches to support coding.
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of human coding expertise while minimizing the researchers’ effort. nCoder has been
used in analyses in an array of fields including studies of engineering [2], naval warfare
teams [34] as well as on a variety of data types, such as chat logs [12], interviews [21],
and training session transcripts [30]. nCoder augments the coding process in 4 important
ways.

1. nCoder scaffolds the generation of classifiers. As in traditional qualitative analyses,
a researcher names and defines conceptual ideas or patterns. Users then create a pro-
cedural (algorithmic) definition of a given code using regular expressions (regexes):
words, word stems, or more complex patterns of words. For example, a user inter-
ested in how students define ideas may search for “definition”, look for all words
that contain the stem “defin”, or explicitly search for words that start with “defin”
but do not include the common colloquialism “definitely”: ˆ(?!definitely)*\bdefin.
Next, nCoder provides data samples taken from a training set for the rater to use as
a guide when they apply and revise their regexes.

2. nCoder modifies the coding process by changing the way data is sampled. Specif-
ically, nCoder draws a test set of size n from the holdout set using a conditional
sampling method called base rate inflation. nCoder randomly selects items one at
a time and codes them. Selection and coding continue until 20% × n of the items
match one of the regexes for the code. These positively coded items are added to the
test set. Then nCoder randomly selects an additional 80%× n items, codes them, and
adds them to the test set. This ensures that even with small test sets and/or low fre-
quency codes, raters will see instances that represent the concept being coded. Once
the human rater has coded the test set and inter-rater reliability has been computed,
the test set items are added to a training set for users to refine the regexes.

3. nCoder provides a three-way validation process to ensure that codes are both pro-
cedurally and conceptually valid. This coding process involves three raters – two
human raters and a machine rating codes using regex matching. One human rater
starts the coding process by defining codes. For each code, the rater creates a clas-
sifier for the code by specifying a set of regexes. The human rater then codes a test
set to see whether or not the examples of the code that were found using the regexes
match their understanding of that concept. Cohen’s kappa is calculated between the
human rater and the machine establishing reliability or procedural validity. After
achieving validity for this procedural definition of the code, the rater measures their
agreement about the code with a second rater, establishing conceptual validity. Only
when all three raters are in agreement by achieving an acceptable kappa and rho
(described next), the classifier is validated.

4. nCoder calculates Shaffer’s ρ to warrant interrater reliability of codes on a large
dataset from small test sets. Shaffer’s ρ is a Monte Carlo rejective method that tests
whether an interrater reliability statistic is over a given threshold at a specified α level
[15, 32]. That is, Shaffer’s ρ tests whether it is possible to claim that the population
κ is above some threshold τ based on the κ value in a test set.

These features allow a researcher to use nCoder to manually code a small amount
of data and develop reliable and valid classifiers to automatically code large scale data.
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2.4 Using Topic Modeling for Code Development

While existing tools help researchers code their data, they may lack the power of dis-
covering potential codes in large scale data. Advances in machine learning and natural
language processing (NLP) make it possible to automatically discover patterns that
humans cannot see in data, or specific instances of existing codes that humans might
miss. Topic modeling [5, 7] is one of the most popular NLP methods for automated
coding. Topic modeling uses a large corpus of data to generate groups of words, called
topics, each of which is represented by a probability distribution assigned to the words
in the data. The words with highest probabilities are used to interpret the “meaning” of
the found topics, where we put meaning in quotation marks to indicate that this is a post-
hoc description, assigned by a researcher, to one of the groups of words identified by
the topic model. Topic modeling also assigns topic proportion scores to each document
which are often used as non-binary codes.

The problem is that topics from topic modeling are not always easy to interpret and
topic model-based coding is hard to validate. There has been research comparing human
coding with topic model based coding [3, 4, 26]. But while the goal of such studies is
to improve topic interpretability, no study has been able to match human coding well
enough that human coding can be replaced. Topic modeling was originally designed to
be a generative method to help researchers find and describe what is in large numbers of
text documents [5]. That is, it was intended to help surface underlying and undiscovered
patterns in data. However, as Bakharia [3] and others argue topicmodeling only produces
“buckets of words” that may not help researchers tell meaningful stories.

However, the fact that topic models cannot replace human coders does not mean
the method has no role to play in developing meaningful codes. Researchers have iden-
tified several ways that topic modeling could a “valuable aids within the quantitative
ethnography process” (p. 297) [3]. In this study, we use topic modeling as a discovery
tool for researchers to identify and refine codes and then develop reliable and validated
classifiers to code data. Our work is closely related to the nCoder coding process. We
ask:

RQ1: Are human created codewords (words that match the regexes) grouped by topics?
This question asks whether or not a set of code words for a given code appear together
at the top (sorted by probability from high to low) of a single topic.
RQ2: Do high-probability keywords in topics include codewords identified by human
coders? This question asks whether or not human created codewords emerge at the top
of the topics (not necessarily grouped together).

To answer these questions, we used two existing datasets for which researchers have
established and validated regex-based coding classifiers through nCoder. We then ran
topic models on the same datasets and find human created codewords that appear as
high-probability words within the topics identified.
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3 Methods

3.1 Data

Our study examined two existing datasets. The first dataset was from a study by Ruis
and colleagues (2019), which we will refer to as the medical dataset [30]. Their study
investigated the use of procedural simulation in continuing medical education short
course. The study included 58 surgeons who participated in a one-day course on laparo-
scopic inguinal and ventral hernia repair. Participants were assigned to groups based on
their reported experiences. Their group discussions were recorded and transcribed. The
transcribed data was coded with six codes (see Table 1), which were defined based on
ethnographic observations and conventional content analysis. Regex-based classifiers
were created and validated through the nCoder tool. Table 1 shows the definition of the
codes, the number of codewords involved, and the validation results.

Table 1. Definition and validation of codes in the medical dataset

Code Description Codewords
(74)

Human 1
vs
Human 2

Human 1
vs
Computer

Human 2
vs
Computer

κ* κ* κ*

real world case Referencing real
bodies, patients,
or other cases

8 0.80 0.95 0.73

mesh repair Referencing
mesh, tacking, or
suturing

27 1.00 1.00 0.97

general anatomy Referencing the
anatomy of the
abdomen

12 1.00 1.00 0.96

pathological
anatomya

Referencing the
anatomy of a
hernia

27 0.95 0.98 1.00

requsting advice Asking what
surgeons should
do in a given
situation

– 0.86 0.86 0.75

trouble- shooting Managing or
negotiating
complications

– 0.85 0.89 0.80

* All kappas are statistically significant for ρ(0.65) < 0.05.

The second dataset was collected from the engineering virtual internship Nephrotex
which we will refer to as the engineering dataset [12, 13, 16]. The data was collected
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Table 2. Definition and validation of codes in the engineering dataset

Code Description Codewords (232) Human 1
vs
Human 2

Human 1
vs
Computer

Human 2
vs
Computer

κ* κ* κ*

tech
constraints

Referring to
inputs: material,
processing
method, surfactant,
and CNT %

33 0.96 1.00 0.96

performance
parameters

Referring to
attributes: flus,
blood cell
reactivity,
marketability, cost,
or reliability

87 0.88 0.93 0.84

collaboration Facilitating a joint
meeting or the
production of team
design products

13 0.76 0.87 0.76

redesign
reasoning

Referring to design
and development
prioritization,
tradeoffs, and
design decisions

33 0.89 0.86 0.84

data Referring to or
justifying
decisions based on
numerical values,
results tables,
graphs, research
papers, or relative
quantities

34 0.94 0.9 0.89

requests Referring to or
justifying
decisions based on
internal
consultant’s
requests or
patient’s health or
comfort

32 0.88 0.94 0.94

* All kappas are statistically significant for ρ(0.65) < 0.05.
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from novice engineering design teams participating in an educational simulation. Pre-
vious analyses of the engineering dataset used nCoder to develop and validate six codes
and regex-based classifiers. Table 2 shows the definition of the six codes, number of
codewords, and the validation results.

3.2 Extracting Codewords

Codewords for both sets were extracted by matching the words in the dataset with the
regex-based classifiers. For the medical dataset, the codes “Requesting Advice” and
“Trouble-shooting” were removed because they used multiple word classifiers. From
the remaining four codes, a total of 74 codewords were found in the data (see Table
1). For the engineering dataset, all six codes were used in this study. The code “data”
matched many numbers which were excluded from the codeword list. A total of 232
codewords were found (see Table 2).

3.3 Generating Topic Models

We used the LDA function in the R package topicsmodels [20] to create topic models.
The models depend on several parameters which has impact to the performance of the
models. However, we were interested in seeing how well topic modeling works with
non-optimal choices, as these are the parameters most likely to be chosen by expert
coders who are not expert topic modelers. Thus, instead of optimizing performance, we
chose to construct a naïve topic model, meaning amodel with choices that are reasonable
and easy to implement.

Document Segmentation. The average size of the documents and the total number of
documents are two competing parameters in tension with one another. On one hand,
larger document size results in more accurate probability estimation within documents.
On the other hand, larger numbers of documents result in better probability estimation
across documents. Data lines can thus be split or merged to get the optimal balance of
average document size and number of documents. We chose to use the lines of data
without alteration as documents input to the topic model.

Word Filtering and Word Lemmatizing. Word exclusion and lemmatizing are two
standard practices in topic modeling. Word exclusion leaves out commonly occurring
words such as conjunctions, articles, and prepositions. We used word exclusion by
removing standard function words (of, the, in, etc.). Lemmatizing converts words into
their root or lemma form: for example. Chairs becomes chair, seeing becomes see, etc.
However, we used the original words rather than their lemmatized form because lemma-
tizing is time intensive, particularly when the computational power is limited and data
size is large.
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Number of Topics. Researchers often struggle to determine an appropriate number of
topics when trying to optimize a topic model. We chose 10 topics for both models for
practical considerations. Ten is larger than the number of codes (4 for medical and 6
for engineering) we were investigating, we anticipated that some subset of topics could
represent the different codes. Ten topics was also small enough for us to easily review
for this study.

Based on these choices, topicmodels were generated for themedical and engineering
datasets. For each topic in each model, a word list was generated by sorting the words
in the topic by word probabilities and choosing the top 15.

4 Results

Table 3 shows the top 15 keyword lists for the topics in the medical dataset. The high-
lighted words are codewords developed with human input using nCoder. Four different
colors represent the four different codes. Similarly, Table 4 shows top 15 keyword lists
for topics from the engineering dataset, with six different colors representing six different
codes.

Table 3. Codewords in top 15 topic words for the medical dataset

n T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9 T_10 

1 yeah ll inaudi-
ble mesh pull camera ah defect ve left 

2 don suture alright tack mesh balloon don mesh hernia hand 
3 bit cut sac sutures hard space uh close patient feel 

4 move grab mhm don guys port perito-
neum midline inguinal model 

5 yup hold push position-
ing ten lateral um time costal cooper 

6 pretty needle laughs tacks roll start lot size margin dissect 
7 angle measure didn position twenty trocar real hole repair scope 

8 knife wall sup-
posed tacking nice inci-

sion stuff people ventral yep 

9 finger ab-
dominal easier system centi-

meters oblique vas top lap fat 

10 lower bring white correct fifteen rectus vessels tie patients scis-
sors 

11 trouble spinal guy flat meshes perfect easy bigger bowel thirty 
12 table mesh cord fixation pulling medial direct leave haven tacker 

13 glove coming ring people middle trocars epigas-
tric grasper omen-

tum ahead 

14 knot mark demon-
strates stay makes exter-

nal tapp piece lot pubis 

15 spot inside guess bit centi-
meter internal fascia tension 

laparo-
scopi-
cally 

won 

Color codes: real word case | mesh repair | general anatomy | pathological anatomy 
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Table 4. Codewords in the top 15 topic words for engineering dataset.

n T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9 T_10 

1 consult-
ants flux batch steric surfac-

tant list guys notebook proto-
type shared 

2 prototype reliabil-
ity team cnt steric note-

book im task 1 space 

3 proto-
types cost design phase agree intern-

ship yeah submit cost write 

4 material market-
bility attach vapor hinder-

ing entry process alex 2 infor-
mation 

5 internal bcr submit process surfac-
tants alex report email proto-

types posted 

6 meet reactivity testing prototype choice ques-
tions padma note-

books 3 note-
book 

7 test blood note-
book 

surfan-
tant

nega-
tive check time due design con-

sultants 

8 agree cell team's dry graph deliver-
able 

manu-
factur-
ing 

complete met intern-
ship 

9 design low proto-
type 

hin-
drance 

per-
formed 

submit-
ted alan 5 4 alex 

10 results rate rest 20 charge ne-
phrotex guess team 5 time 

11 decide 11 option jet attrib-
utes

deliver-
ables rudy submit-

ted pmma meet-
ing 

12 cosultant lower specifi-
cations material cost sum-

mary 
sup-
posed send agree michell

e 

13 attributes lowest results 2 re-
search submit meet-

ing time choices analy-
sis 

14 require-
ments 43.33 time pespvp meet-

ing 
click-
ing 5 forget stand-

ards 
engi-
neering 

15 5 pmma proto-
types 10 hydro-

philic email hey delivera-
ble 

attrib-
utes similar 

Color codes: tech constraints | performance | collaboration | design decisions | data | requests 

4.1 RQ1: Are Codewords Grouped by Topics?

In an ideal topic grouping each topic keyword list should contain either no codewords
or only codewords from the same code. In practice, if a list contains a large proportion
of codewords from a single code, the topic could represent that code well.

For the medical dataset (see Table 3) the topic T_4 contains the largest proportion
of codewords: 40% of the 15 most probable words for the topic are from the code mesh
repair. Other topics contain smaller proportions of codewords from any single code.

In the engineering dataset the performance of the topic model on this criterion is
even worse. No topic has more than 27% of the 15 most probable words from a single
code.

Thus, in both cases, topic keyword lists only contain a small proportion of codewords
from a single code; most of the most probable topic keywords are either not codewords
for any code, or codewords frommultiple codes. This suggests that naïve topic modeling
does not do a good job of identifying clusters of codewords.

4.2 RQ2: Do High-Probability Topic Keywords Include Human Identified
Codewords?

From Table 3 and Table 4, we see that for both datasets, every code has at least 2
codewords included in the most probable words across all topics. This suggests that
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these naïve topic models identify some codewords from all of the human-identified
codes.

5 Discussions

The goal of this study is to investigate whether or not topic modeling could help in
discovering codes. That is, assuming that a researcher does not already have a set of
codes in mind, could a naïve topic model help to discover useful codes to describe the
data?

The common practice of using topic modeling is to “label” the topics by reviewing
the top keywords. Our study shows that, topic keywords do not group together words
that from classifiers that humans developed using traditional approaches to code iden-
tification. Thus “labelled” topics from topic modeling are unlikely to replicate codes
that a human would identify as meaningful. Using topics as codes, then, may result in
misleading conclusions.

However, our results did show a different potential use for topic modeling in code
identification. Although the topic modeling keyword lists cannot be used as codes, they
may provide keywords that could be used for code discovery.

In our study, all human identified codes had far more codewords included in the
keyword lists than would be likely due to chance alone. For example, the code real
world case had 8 codewords in the medical dataset. The medical dataset had 4581,
unique words, so the likelihood of choosing a codeword that indicates a real world
case is 8/4581 = 0.17% or 1 in 573. We examined 10 lists of 15 keywords for the
medical dataset. At chance we would expect to find 150 × 0.17% = 0.26 codewords
that indicate a real world case. In fact, we found two such codewords—that is,
codewords for a real world casewere 8 timesmore likely than at random.Moreover,
the 150 high-probability keywords from the topic model identified 27 codewords from
the human-identified codes—that is, 18% of the keywords were meaningful for codes
in the dataset. This, in turn, suggests that the high-probability keywords from a topic
model provide a good source of words that a human coder should consider investigating
as possible keywords for codes.

Whether or not a code can be actually found through these codewords is still a
problem. It depends on how sensitive a researcher is to the codewords and how strong
the codewords signal a code to the researcher examining them. The topic keyword lists
could bemore useful if the actual data containing the keywords could be easily reviewed.
A topic modeling utility could create a naïve topic model and let a researcher click on
a keyword to see sample of data lines that contain it. The data lines may provide much
richer information about whether a particular keyword is a clue to a meaningful code.

This work has the obvious limitation of only investigating two datasets with validated
regex classifiers. Also, we deliberately chose naïve topic models. It is possible that other
algorithms could be developed to improve topic model performance by automatically
choosingmore effective parameters for a non-technical user, or usingmore sophisticated
supervised topic modeling. Finally, the work here is based on post hoc analysis of code-
words as they appear in topic keywords. Future work needs to examine the conversion
rate of topic keywords to new codes.
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These limitations notwithstanding, this work confirms previous findings that topic
modeling is not a good substitute for human coding; however, it also suggests that topic
modeling can potentially supplement manual and automated coding methods by helping
researchers discover potential keywords for new codes or to augment existing codes.
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